
AB IdeaLab, Competitive Programming Team, Fall 18�Spring 19 January 21, 2019

Lecture 3: Lisp

American Computer Science League, January Contest

Primary Editor: Sanjit Bhat Secondary Editor: Alexander Sun

1 Fun Facts

• Lisp was developed in the 50's by John McCarthy at MIT. He was a highly in�uential �gure in
Arti�cial Intelligence who later went on to win the Turing Award and found the Stanford AI Lab.
Owing to its founder, Lisp was predominently used in AI research.

• After Fortran, Lisp is the second-oldest high-level programming language.

• Ever heard of tree data structures, dynamic typing (not specifying variable types), conditionals,
or recursion? Yup, these concepts were pioneered in Lisp.

2 Background Info

First, I recommend spending some time on the Wikipedia page to get a background on Lisp-speci�c
syntax. It delves into why certain things are the way they are.1

Next, check out the ACSL wiki for Lisp. Like the name implies, the fundamental idea behind Lisp
is that every line of code, from function calls to print statements, is placed inside a linked-list. For
example, (function arg1 arg2 arg3 . . . argn) calls the function with the subsequent arguments as its
input. The highly regular parentheses-based syntax makes the language easy to process. In fact, owing
to its regularity, Lisp was one of the �rst languages that allowed recursion�each of the arguments can
themselves be functions.

Here's the relevant terminology:

1. atom: an individual list element that is not a list itself

2. literal : SUPER IMPORTANT. De�ned with a single leading quote. Tells Lisp whether or not
to evaluate a statement. Note: watch for the quote whenever you read a problem.

3. NIL: Both an atom and a list with no elements. The equivalent of null in Java and NONE in
Python. In true or false functions, NIL represents false.

2.1 Basic Functions

There are 4 basic functions: SET, SETQ, EVAL, and ATOM. (SET arg1 arg2) assigns arg2 to arg1,
evaluating the arguments as usual if they are non-literals. (SETQ arg1 arg2) is the exact same as
SET except that it automatically makes arg1 a literal. Thus, Lisp assumes that arg1 is a variable name.

EVAL resolves arguments, while ATOM tests whether an item is an atom or a list. To test your
knowledge, what will each of the following ATOMs return in the following problem? Also, what will
(EVAL c) return?

1. (SETQ a `(MULT 2 3))

2. (SET `b `a)

3. (SET `c a)

1Did you know that Lisp uses pre�x notation in its S-expressions? That's why pre�x/post�x/in�x is an ACSL topic

1

https://en.wikipedia.org/wiki/Lisp_(programming_language)#Syntax_and_semantics
http://www.categories.acsl.org/wiki/index.php?title=LISP


4. (ATOM b)

5. (ATOM c)

Answer: a is assigned to be the list (MULT 2 3). If there was no quote before (MULT 2 3), Lisp would
evaluate arg2 and set a to be 6. b is set to be the literal `a', which makes it a character and makes the
ATOM function return `true'. c is set to be the variable a, which makes it a list and makes the ATOM
function return NIL. Eval c would evaluate the list, returning the value 6.

2.2 Arithmetic Functions

There are 9 main arithmetic functions: ADD, SUB, MULT, DIV, SQUARE, EXP, EQ, POS, NEG.
Every function corresponds to its relevant mathematical operation. A few things to note:

• ADD and MULT work on an inde�nite number of arguments

• EQ tests for equality, returning `true' or NIL

• POS and NEG test whether their arguments are positive or negative

• ADD, SUB, MULT, and DIV can be written with +, -, *, and /. If you use these symbols,
remember to use pre�x notation.

2.3 List Functions

There are 4 main list functions: CAR, CDR, CONS, REVERSE. Understanding how these work is
arguably the hardest part of ACSL Lisp.

(CAR x) returns the �rst element of list x, and (CDR x)�the �cutter� function�returns x without
its �rst element. For quick access to speci�c elements in a list, Lisp uses functions like CAADDDAR,
where the A's and D's represent successive CAR and CDR operations. For instance, the preceding
functions represents (CAR(CAR(CAD(CAD(CAD(CAR x)))))).

CONS(x y) is slightly more complex. It requires y to be a list (x can be anything) and returns the
list (x y). Note, if both x and y were lists, the elements of y would be unpacked from the list, but the
elements of x would not. E.g., (CONS `(hello idealab) `(from sanjit)) would return ((hello idealab) from
sanjit), not (hello idealab from sanjit). Finally, (REVERSE arg1 arg2 . . . argn) returns (argn . . . arg2
arg1).

What value does the following code produce:

1. (SETQ z (CONS `(red white blue) (CDR `(THIS is a list))))

2. (CDDAR z)

Answer: the �rst line would set z to be ((red white blue) is a list). The second line would perform (CDR
(CDR (CAR z))), which is (blue).

Critical thinking question: in the previous code, what would happen if we did (CONS (red white
blue)) instead of (CONS `(red white blue)). Answer: Lisp would throw an error. Since we omitted the
quote, it would try to evaluate (red white blue), assuming red is a function and white and blue are red's
arguments. Since the function red is not previously de�ned, Lisp throws an error.

2.4 De�ning Your Own Function

You can de�ne your own function using the DEF function. The syntax is (DEF function_name (args)
(expression operating on args)). For example, (DEF second (args) (CAR (CDR args))) creates a function
second that returns the second argument of its input.

2



2.5 Executing Actual Lisp Code

If you'd like to practice Lisp or verify any of the problems below, use the JDoodle online Lisp editor.
The one thing to note is that the basic arithmetic operators ADD, SUB, MULT, and DIV don't exist in
JDoodle. They must be replaced by their respective symbols.

3 Exercises

1. Evaluate (MULT (ADD 6 5 0) (MULT 5 1 2 2) (DIV 6 (SUB 2 5)))

2. Evaluate (CDR `((2 (3))(4 (5 6) 7)))

3. (SETQ X `(RI VA FL CA TX))
(CAR (CDR (REVERSE X)))
What is the value of the CAR expression?

4. Evaluate (CAR `((2 (3)) (4 (5 6)) 7))

5. (SETQ X `(((a (b c) d) e) ((b (c (d e) b)) a)(a b c)((e d) b (a b)(c e d))))
Evaluate the following expression:
(CDR (CDR (CDR (REVERSE (CAR (REVERSE (CDR x)))))))

Note: to accurately evaluate the expression, you need to �rst understand the structure of how the
list is packed. Do this by drawing arrows between corresponding parentheses.

6. Given the function de�nitions for HY and FY as follows:
(DEF HY(PARMS)(REVERSE (CDR PARMS)))
(DEF FY(PARMS)(CAR (HY (CDR PARMS))))
What is the value of the following?
(FY `(DO RE (MI FA) SO))

7. Evaluate (EXP (MULT 2 (SUB 5 (DIV (ADD 5 3 4) 2)) 3) 3)

3

https://www.jdoodle.com/execute-clisp-online


4 Solutions

1. -440

2. ((4 (5 6) 7))

3. CA

4. (2 (3))

5. ((e d))

6. SO

7. -216

4


	Fun Facts
	Background Info
	Basic Functions
	Arithmetic Functions
	List Functions
	Defining Your Own Function
	Executing Actual Lisp Code

	Exercises
	Solutions

