
AB IdeaLab, Competitive Programming Team, Fall 18�Spring 19 February 8, 2019

Lecture 3: FSA/Regular Expressions

American Computer Science League, February Contest

Primary Editor: Sanjit Bhat Secondary Editor: Alexander Sun

1 Fun Facts

• Developed in 1951 by mathematician Stephen Cole Kleene.

• Ken Thompson (one of the guys who developed UNIX) used regular expressions on an early Unix
editor. This eventually lead to its use in the famous UNIX tool grep.

• Applications include string searching algorithms, input veri�cation, and search engines.

• You can even use it inside your programming editor to �nd where you've put stu�.

2 Background

What are regular expressions? According to Wikipedia, regular expressions (regex) are �a sequence
of characters that de�ne a search pattern.� In other words, a regex de�nes a set of possible strings in a
concise manner for some later purpose. For example, reali[sz]e de�nes the set {realize, realise} of possible
strings. This set can be later used for cross-referencing American-English spellings with British-English
spellings.

All the regex syntax you need to know. Regex includes metacharacters that de�ne more complex
types of string matching. The following is a list of all the regex metacharacters you need to know:

1. |, or, ∪ These are booleans that tell the processor to take the set union of the regexes on the left-
and right-hand sides. For instance, gr(a|e)y, gray or grey, and gr(a∪e)y all de�ne the set {gray,
grey}.

2. λ The null or empty string.

3. Quanti�cation De�ning the number of something allowed to occur. Note that these all operate
on a regex left of the operator.

(a) ? Zero or one. E.g., colou?r = {color, colour}.

(b) * Zero or more. This is also called the Kleene Star (named after the inventor, Stephen Kleene).

(c) + One or more.

4. . Wildcard (a �ll in for any character). Combine . and * for a.*b, which accepts any string with a
and b as the leftmost and rightmost characters, respectively, with an arbitrary number of arbitrary
characters inbetween.

5. [. . . ] Set of possible character matches. Think the reali[sz]e example above. This can get slightly
more complex by using hyphens to de�ne ranges of possible characters. E.g., [a-z] means every
lowercase char from a to z; [abcx-z] means a, b, c, and x, y, z; and [a-cx-z] means a, b, c and x, y,
z.

6. [^. . . ] Set of characters not contained withing the brackets. E.g., [^a-z] matches any character
that is not a lowercase character from a to z.

1



7. () Just like in math, parentheses imply grouping. E.g., if we wanted the set {gray, grey}, gra|ey
would give us {gra, ey}. Instead, using parentheses we can get gr(a|e)y, which gives us the correct
regex. A more complex example is H(ä|ae?)ndel, which matches {Handel, Händel, Haendel}.

Order of operations: Kleene Star (*), concatenation (ab), and union(∪). Because Kleene Star has the
highest priority, a.*b accepts a string with an arbitrary number of several di�erent arbitrary characters
(e.g., {acdb, . . . }), as opposed to only an arbitrary number of a single arbitrary character (e.g., {accb,
. . . }).

Practicing the syntax via identity proofs. To make sure you understand the syntax and order of
operations, see if you can prove the following identities:

1. (a*)* = a*

2. aa* = a*a

3. aa* ∪λ = a*

4. a(b ∪ c) = ab ∪ ac

5. a(ba)* = (ab)*a

6. (a ∪ b)* = (a* ∪ b*)*

7. (a ∪ b)* =(a*b*)*

8. (a ∪ b)* = a*(ba*)*

How are regex interpreted by the computer? In a regex, there are two types of chars: literals and
metacharacters. Literals de�ne regular characters, while metacharacters indicate more nuanced behav-
iors. After creating a regex, a regex processor transforms the characters into an internal representation
that can be thought of as a Finite State Automata (FSA). FSAs are an abstract concept in theoretical
computer science consisting of the following:

1. A �nite number of states, of which exactly one is active at any given time

2. Transition rules to change the active state

3. An initial state

4. One or more �nal states

We can draw an FSA by representing each state as a circle, the �nal state as a double circle, the start
state as the only state with an incoming arrow, and the transition rules as labeled-edges connecting the
states. For instance, the following is an FSA diagram for the regex x+y+:

A B C
x y

x y

If you would like to learn more about FSAs, I recommend the Wikipedia page. Outside the ACSL
bubble, automata and �niteness are an important �eld of research in theoretical CS. They connect back
to problems such as P vs. NP and whether a program will stop in a reasonable amount of time or even
in an in�nite amount of time.

Testing regex syntax. If you would like to practice regex and have your code actually matched
against strings, I recommend this website.

2

https://regexr.com/


3 Exercises

3.1 Translate an FSA to a Regular Expression

1. Find a simpli�ed Regular Expression for the following FSA:

0 0

1

1

2. Find a simpli�ed Regular Expression for the following FSA:

a

b

c

c

3. List all of the following FSAs which represent 1*01*0:

(a)

1

0

1

0

(b)

1

0

(c)

0,1

1

0,1

0

(d)

0

1

1

1

0

1

0

3



3.2 Simplify a Regular Expression

3.3 Determine which Regular Expressions or FSAs are equivalent

1. Which, if any, of the following Regular Expressions are equivalent?

(a) (a∪b)(ab*)(b*∪a)
(b) (aab*∪bab*)a
(c) aab*∪bab*∪aaba∪bab*a
(d) aab*∪bab*∪aab*a∪bab*a
(e) a*∪b*

3.4 Determine which strings are accepted by either an FSA or a Regular

Expression

1. Which of the following strings are accepted by the following Regular Expression �00*1*1U11*0*0�?

(a) 0000001111111

(b) 1010101010

(c) 1111111

(d) 0110

(e) 10

2. Which of the following strings match the regular expression pattern �[A-D]*[a-d]*[0-9]�?

(a) ABCD8

(b) abcd5

(c) ABcd9

(d) AbCd7

(e) X

(f) abCD7

(g) DCCBBBaaaa5

3. Which of the following strings match the regular expression pattern �Hi?g+h+[^a-ceiou]�?

(a) Highb

(b) HiiighS

(c) HigghhhC

(d) Hih

(e) Hghe

(f) Highd

(g) HgggggghX

4 Solutions

4.1 Answers for Section 3.1

1. 01*01

2. (a|b)c or ac ∪ bc

3. a. The other choices correspond to 1*0, (0∪1)*1(0∪1)*0, and 01*10*∪10*10*

4



4.2 Answers for Section 3.3

1. B is di�erent from the rest because it requires an ending `a'. E is di�erent from the rest because it
doesn't allow for alternating a's and b's. C and D are di�erent because of the third `or' condition.
Upon very close inspection, A and D are equivalent (check this carefully yourself). Therefore, A
and D are the answers.

4.3 Answers for Section 3.4

1. 0000001111111 and 10

2. ABCD8, abcd5, ABcd9, and DCCBBBaaaa5

3. HigghhhC, Highd, and HgggggghX

5


	Fun Facts
	Background
	Exercises
	Translate an FSA to a Regular Expression
	Simplify a Regular Expression
	Determine which Regular Expressions or FSAs are equivalent
	Determine which strings are accepted by either an FSA or a Regular Expression

	Solutions
	Answers for Section 3.1
	Answers for Section 3.3
	Answers for Section 3.4


