2017-2018

Contest #4

SENIOR DIVISION SOLUTIONS

1. Graph Theory $0 \ 1 \ 0 \ 1 \ 1 \ 3 \ 5 \ 8 \ 3 \ 6 \ 6 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 3 \ 8 \ 5 \ 6 \ 10 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0$	1. B 32
 Graph Theory The 13 cycles from B are: BAB, BAFB, BCB, BCDEB, BCDEAB, BCDEAFB, BCDEFB, BCFB, BDEB, BDEAB, BDEAB, BDEAFB, BDEFB, BFB 	2. 13
3. Digital Electronics The circuit translates to: $\overline{(\overline{A}(\overline{A}+\overline{B}))(\overline{BC}+\overline{C})}$ $\overline{(\overline{A}(\overline{A}+\overline{B}))(\overline{BC}+\overline{C})} = \overline{\overline{A}(\overline{A}+\overline{B})} + \overline{(BC+\overline{C})} = \overline{\overline{A}} + \overline{\overline{A}+\overline{B}} + BC + \overline{C}$ $= A + A + B + BC + \overline{C} = A + B(1+C) + \overline{C} = A + B + \overline{C}$ So $A + B + \overline{C} = 0$ implies $A = 0 \land B = 0 \land \overline{C} = 0$. (0, 0, 1) makes it FALSE.	3. (0, 0, 1)
4. Digital Electronics The circuit translates to: $A(\overline{A+B} \oplus B\overline{C}) + \overline{C}$ $A(\overline{A+B} \oplus B\overline{C}) + \overline{C} = A(\overline{\overline{A+B}B}\overline{C} + \overline{A+B}\overline{B}\overline{C}) + \overline{C}$ $= A((A+B)B\overline{C} + \overline{AB}(\overline{B} + \overline{\overline{C}})) + \overline{C}$ $= A(AB\overline{C} + B\overline{C} + \overline{AB} + \overline{AB}C) + \overline{C}$ $= AB\overline{C} + AB\overline{C} + A\overline{AB} + A\overline{AB}C + \overline{C}$ $= AB\overline{C} + \overline{C} = \overline{C}(AB + 1) = \overline{C}$	4. \overline{C}
5. Assembly Language This program converts 7325 ₈ to a base 10 number.	5. 3797