SENIOR DIVISION SOLUTIONS

1. Graph Theory

To find the number of paths of length 3 from, each vertex, add the entries in the cubed adjacency matrix in each row. B has the most at 32 .

2. Graph Theory

The 13 cycles from B are: BAB, BAFB, BCB, BCDEB, BCDEAB, BCDEAFB, BCDEFB, BCFB, BDEB, BDEAB, BDEAFB, BDEFB, BFB

3. Digital Electronics

3. $(0,0,1)$

The circuit translates to: $\overline{(\bar{A}(\overline{A+B}))(\overline{B C+\bar{C})}}$

$$
\begin{aligned}
& \overline{(\bar{A}(\overline{A+B}))(\overline{B C+\bar{C}})}=\overline{\bar{A}(\overline{A+B})}+\overline{\overline{(B C+\bar{C})}}=\overline{\bar{A}}+\overline{\overline{A+B}}+B C+\bar{C} \\
& =A+A+B+B C+\bar{C}=A+B(1+C)+\bar{C}=A+B+\bar{C}
\end{aligned}
$$

So $A+B+\bar{C}=0$ implies $A=0 \wedge B=0 \wedge \bar{C}=0 .(0,0,1)$ makes it FALSE.

4. Digital Electronics

The circuit translates to: $A(\overline{A+B} \oplus B \bar{C})+\bar{C}$

$$
\begin{aligned}
A(\overline{A+B} \oplus B \bar{C})+\bar{C} & =A(\overline{\overline{A+B}} \bar{C} \bar{C}+\overline{A+B} \overline{B \bar{C}})+\bar{C} \\
& =A((A+B) B \bar{C}+\overline{A \bar{B}}(\bar{B}+\overline{\bar{C}}))+\bar{C} \\
& =A(A B \bar{C}+B \bar{C}+\bar{A} \bar{B}+\bar{A} \bar{B} C)+\bar{C} \\
& =A B \bar{C}+A B \bar{C}+A \bar{A} \bar{B}+A \bar{A} \bar{B} C+\bar{C} \\
& =A B \bar{C}+\bar{C}=\bar{C}(A B+1)=\bar{C}
\end{aligned}
$$

5. Assembly Language
6. 3797
7. \bar{C}
