American Computer Science

2017-2018

League

Contest #1

SENIOR DIVISION

1. Computer Number Systems How many numbers from 1 ₁₀ to 31 ₁₀ , inclusive, have more 1's than 0's in their binary representations? Do not count lead zeroes.	1.
2. Computer Number Systems	
Convert to octal: 201718_{10}	2.
3. Recursive Functions Begin with an equilateral triangle. Construct an equilateral triangle on each perimeter segment of the previous figure using each segment in only one triangle. Continue this process for an additional 5 times. How many equilateral triangles are in the resulting figure?	3.
4. Recursive Functions	
Find $f(7,5)$ if given:	4.
$f(x, y) = \begin{cases} y & \text{if } y = 1 \text{ or } y = x - 1 \\ f(x - 1, y - 1) + f(x - 1, y) & \text{otherwise} \end{cases}$	
5. What Does This Program Do?	
What is outputted when the program is run?	5.
a = 0: b = 2: c = 2: d = -1: e = 4	
f = 10 * c / b / (e - d) if b == f then b = b * f	
a = b * e / abs(d)	
if $a != b * c$ then $a = b$ else $a = c$	
$\mathbf{e} = \mathbf{a} \uparrow 2 + \mathbf{c} \uparrow 2 - \mathbf{b} / \mathbf{d}$	
if $(a * f > b * e) (e / a != int(e / a))$ then $e = e / a$ else $a = e / a$ b = abs(b * c * d - a * c)	
if $b = a * c * (f + 1)$ then $f = b / f$ else $b = b / f$	
if sqr(a* c / f) = = int(e / a) then b = b \uparrow 2 else a = a \uparrow 2	
if $(a < b) \&\& (c != f) \&\& (f - c == a + 2 + d)$ then $f = f \uparrow 2$ else $c = c \uparrow 2$	
output a / (b + f) - e / (d * c) - (10 *b) / (a / f + c / f)	