1. 29

3. (0, 1)

American Computer Science League

Senior Division Solutions

ACSL

1.	Granh	Theory	7
1.	Graph	THEOLY	1

1	1	1	1	0	2		2	2	2	2	3
0	0	1	0	1							1
0	1	0	1	1		=	2	0	1	0	2
1	0	0	0	1			2	1	1	1	0
1	0	0	0	0			1	1	1	1	0

Adding all the entries in the second matrix gives the number of paths of length 2. There are 29 of them.

- **2. Graph Theory** There are 8 cycles: AA, ABA, ABCA, ABDA, ABDCA, ACA, ADA, and ADCA
 - 2. 8
- **3. Digital Electronics** The circuit translates to: $((A + \overline{B}) + \overline{B})B$

$$\frac{\overline{(A+B)+B}}{(A+B)+B+B} = \overline{(A+B)+B+B} = \overline{A+B+B+B} = \overline{A+B}$$

This is only FALSE when both are FALSE. Only one ordered pair satisfies this condition: (0, 1)

4. Digital Electronics

The circuit translates to: $((\overline{A} + (A+B)) + (B+\overline{C})) + \overline{C}$ $((\overline{A}+(A+B))+(B+\overline{C}))+\overline{C}=$ $=1+B+\overline{C}=1$

5. Assembly Language

This program determines the prime factorization of 288 written as individual factors. $288 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$

4. 1

- 2 2 3
 - 3