ACSL

Senior Division Solutions

1. Graph Theory

1	1	1	1	0
0	0	1	0	1
0	1	0	1	1
1	0	0	0	1
1	0	0	0	0

1 \& 1 \& 0 \& 1 \& 1

2 \& 0 \& 1 \& 0 \& 2

2 \& 1 \& 1 \& 1 \& 0

1 \& 1 \& 1 \& 1 \& 0\end{array}\right|\right.\)
Adding all the entries in the second matrix gives the number of paths
of length 2. There are 29 of them.
2. Graph Theory There are 8 cycles: $\mathrm{AA}, \mathrm{ABA}, \mathrm{ABCA}, \mathrm{ABDA}$, 2. 8 ABDCA, ACA, ADA, and ADCA
3. Digital Electronics The circuit translates to: $((A+\bar{B})+\bar{B}) B$
$((\overline{A+\bar{B})+\bar{B}}) B=(\overline{A+\bar{B}})+\bar{B}+\bar{B}=A+\bar{B}+\bar{B}+\bar{B}=A+\bar{B}$
This is only FALSE when both are FALSE. Only one ordered pair satisfies this condition: $(0,1)$

4. Digital Electronics

4. 1

The circuit translates to: $((\bar{A}+(A+B))+(B+\bar{C}))+\bar{C}$
$((\bar{A}+(A+B))+(B+\bar{C}))+\bar{C}=$
$=1+B+\bar{C}=1$

5. Assembly Language

This program determines the prime factorization of 288 written as individual factors. $288=2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$
5. 2

2
2
2
2
3
3

